Semaines 8. 2024

Flèches de poutres 1/2

PARTIE 1: (slide 4 - 28)

intro flèche et relations différentielles (Chapitre 9 de Gere et Goodno)

PARTIE 2: (slide 29 - 38)

flèche pour poutres avec plusieurs « zones » (Chapitre 9 de Gere et Goodno)

PARTIE 3: (slide 39 - 49)

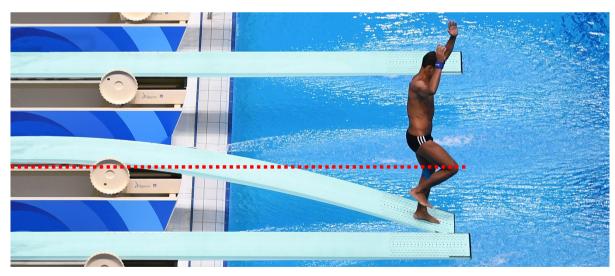
calcul de flèche par principe de superposition (Chapitre 9 de Gere et Goodno)

PROGRAMME DU COURS, semaines 6-10

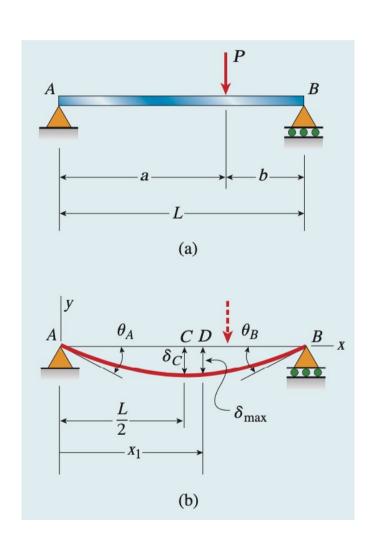
•				
6	15.10	Force internes dans les poutres non-déformées. Méthode Section et différentielle		
6	17.10	$\epsilon(y)$ et $\sigma(y)$ en flexion pure Moment d'inertie	Série 6	
7	29.10	Charge axiale. Poutre composite	Série 6	
7	31.10	Quiz + Session questions & réponses	Série 1-5	
8	05.11	Examen mi-semestre		
8	07.11	Flèche des poutres	Série 7	
9	12.11	Flèche pour guidage flexible	Série 8a	
9	14.11	Systèmes indéterminés	Série 8b	
10	19.11	Flambage	Séries 9	
10	21.11	Q&A	Série 10	

Flèche – partie 1 (slides 4-28) Objectifs d'apprentissage

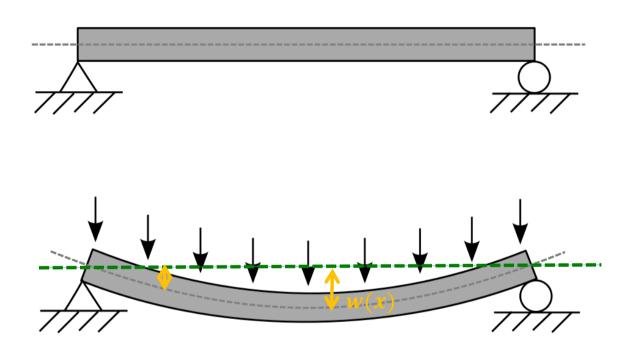
- Savoir définir la flèche d'une poutre
- Calculer la flèche en utilisant les relations différentielles entre la flèche w(x) et le moment interne de flexion M(x)



https://duraflexeu.com/en



Flèche d'une poutre w(x)

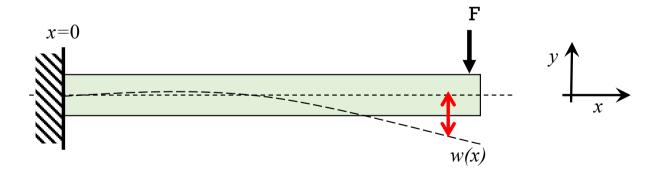


La déformation de <u>l'axe neutre</u> est décrite par la fonction w(x), appelée **la flèche** de la poutre (anglais: *beam deflection*).

À chaque point de la poutre: translation et rotation

Hypothèses pour flèche (Euler-Bernoulli)

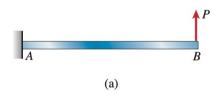
- (même hypothèses que précédemment dans ce cours)
- Charge en y, moment de flexion en z
- Déformations élastiques linéaires
- Grand rayon de courbure, avec $\left(\frac{dw}{dx}\right)^2 \ll 1$
- Poutre de section symétrique par rapport à l'axe y, la flèche sera en direction de y (nous n'aurons pas de flèche en z)

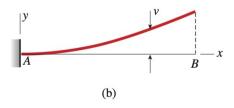


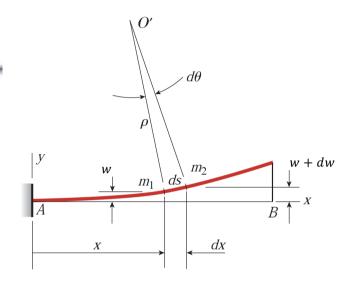
Flèche w d'une poutre

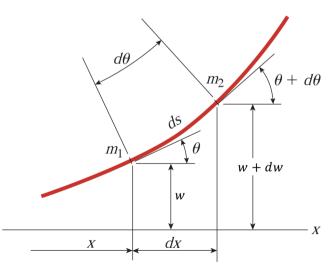
Sans approximations – définitions locales

- On peut lier courbure et flèche
- Localement : Translation en $y \in x$ rotation autour axe x
- lacktriangle Une poutre a localement un rayon de courbure ho
- Formule générale pour courbure: $\kappa = \frac{1}{\rho} = \frac{d\theta}{ds}$
- $tan(\theta) = \frac{dw}{dx}$ (par géométrie)









Flèche d'une poutre

Approximation pour petites déflections (=ce que nous allons utiliser)

- Si petite déflection :
 - \Box ds \approx dx
 - $\Box \tan(\theta) \approx \theta$
- \blacksquare ainsi $\theta = \frac{dw}{dx}$
- ainsi: $\kappa = \frac{1}{\rho} \approx \frac{d\theta}{dx} \approx \frac{d^2w}{dx^2}$
- nous savons lier rayon de courbure ρ et moment de flexion $M_{z(\chi)}$

$$\kappa = \frac{1}{\rho} = \frac{M}{E I}$$

$$\kappa = \frac{1}{\rho} = \frac{M_Z(x)}{EI_{Z,y_0}} \approx \frac{d^2w}{dx^2}$$

Flèche d'une poutre

Plus généralement

■ Plus généralement (sans approximation de petits angles)

$$\kappa = \frac{1}{\rho} = \frac{d\theta}{ds} = \frac{\frac{d^2w}{dx^2}}{\left[1 + \left(\frac{dw}{dx}\right)^2\right]^{\left(\frac{3}{2}\right)}}$$

Nous n'allons pas traiter ce cas plus général dans ce cours

Relation différentielle: Moment de flexion – flèche

Flèche
$$w(x)$$
:
$$w''(x) = \frac{d^2w}{dx^2} = \frac{M_Z(x)}{EI_Z}$$

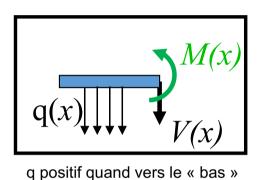
 $M_z(x)$: Moment interne de flexion Unités: [Nm]

E: Module de Young (« rigidité » du matériau) Unités: [Pa] ≈ 100 GPa pour du métal, 2 GPa pour nylon, 1 MPa pour du silicone

I_{z, y₀}: Moment quadratique (d'inertie): (« rigidité » de la forme) donné par la géometrie de la section et l'axe de déflection. À l'axe neutre.
 Unités: [m⁴]

Rappel: Relation différentielle entre:

- charge q(x) (perpendiculaire à poutre)
- force cisaillement V(x)
- moment M(x)



V'(x) = -q(x) M'(x) = V(x) M''(x) = -q(x)

• la définition du sens conventionnels de q(x) et M(x) sont importants pour le signe des relations différentielles

Relation entre flèche w(x) et charge q(x)

$$V(x) = -\int q(x) dx$$

$$M_Z(x) = \int V(x) dx$$

$$w'(x) = \theta(x) = \int \frac{M_Z(x)}{EI_{Z,y_0}} dx$$

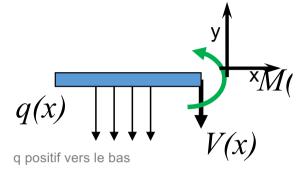
$$w(x) = \int w'(x) dx$$

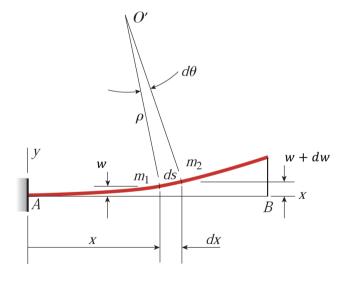
$$w'(x) = \theta(x)$$

$$w''(x) = \frac{M_Z(x)}{EI_Z}$$

$$w'''(x) = \frac{V_y(x)}{EI_Z}$$

$$\frac{d^4w(x)}{dx^4} = -\frac{q(x)}{EI_Z}$$





 $\theta(x)$ est l'angle que fait la poutre à x avec l'axe neutre sans forces

La poutre monte = w positif

Vice-versa: trouver forces, charge et moments à partir de de la déflection

Ça marche dans les deux sens:

- À partir de la flèche, nous pouvons calculer:
 - Moment de flexion
 - Force de cisaillement
 - Charges ponctuelles et distribuées
- À partir des charges, on peut calculer la flèche

Constantes d'intégration

$$\frac{d^4w(x)}{dx^4} = -\frac{q(x)}{EI_z} \to w(x) = -\frac{1}{EI} \iiint \int q(x)$$

Oh malheur, il y a donc 4 constantes d'intégration!

Par example, si
$$q = \text{constante}$$
, $w(x) = \frac{q x^4}{24} + A \frac{x^3}{6} + \frac{B x^2}{2} + C x + D$

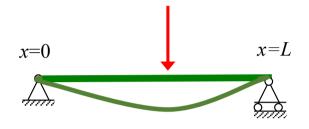
Nous trouverons les constantes par:

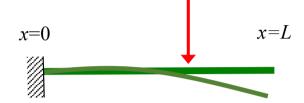
- i. les conditions aux bords. M(x), V(x), $\theta(x)$ et w(x) aux supports ou aux extrémités
- ii. Continuité de $\theta(x)$ et w(x) si plusieurs zones (attention, si plusieurs zones, nous aurons plus de constantes d'intégration, car une fonction w(x) par zone)

Conditions aux limites sur w et w'

y X

(cas simple d'une seule région)





$$w(0) = 0$$
 flèche connue

$$w(L) = 0$$
 flèche connue

$$w'(0)$$
 et $w'(L)$: angles pas connues

$$w(0) = 0$$
 flèche connue
 $w'(0) = 0$ angle connue à l'encastrement

$$w(L)$$
 et $w'(L)$: pas connues

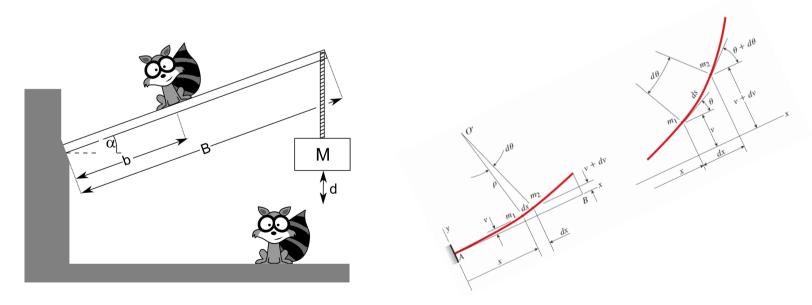
Les 2 conditions aux limites sur w(x) et/ou w'(x) permettent de déterminer les 2 constantes d'intégration nécessaires pour trouver w(x) à partir de M(x).

Si nous commençons à partir de q(x), il faut alors utiliser nos connaissances des conditions sur V(x) et/ou M(x)

Réfléchir : quels sont forces, moments, angles et flèches au supports et aux extrémités?

Conditions aux limites pour trouver les 4 constantes d'intégration pour w(x)

- Si pivot ou poutre simplement posé:
 - seule la flèche (=0) au pivot est connue (pas sa dérivée)
- Si la poutre est encastrée, alors
 - la flèche et l'angle à l'encastrement (dérivée de la flèche) sont connues
- Angle = 0 c'est l'angle avec la poutre sans charges (pas l'angle par rapport au sol)



Conditions limites

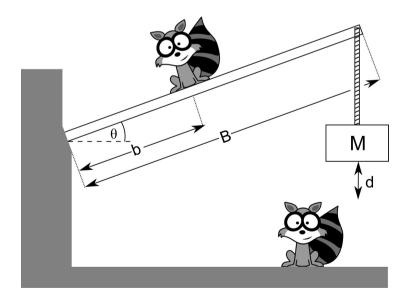
Turning point: MICRO200

$$A. \quad w(0) = 0 \quad w'(0) = 0$$

B.
$$w(0) = 0$$
 $w'(0) = \theta$

$$c. \quad w(0) = 0 \quad w'(0) = inconnue$$

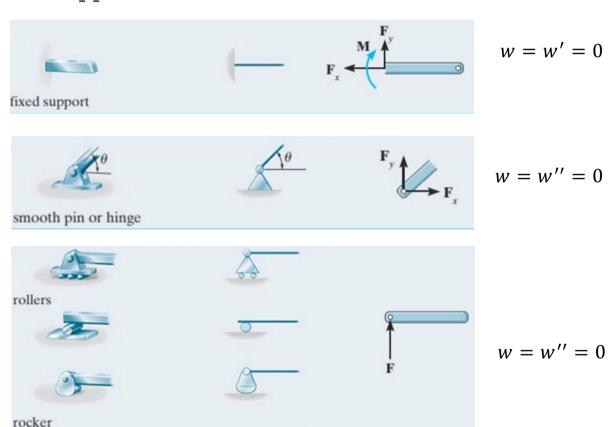
D.
$$w(0) = inconnue \quad w'(0) = \theta$$



Conditions aux supports et aux bords

supports typiques

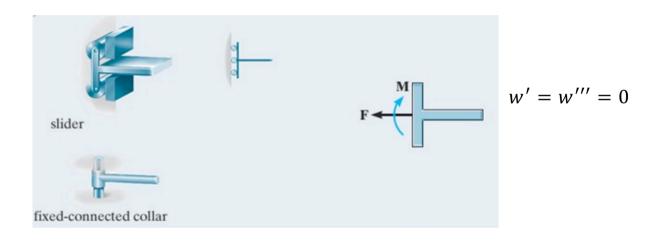
Le type de support nous donne directement des conditions limites



Conditions aux supports et au bords

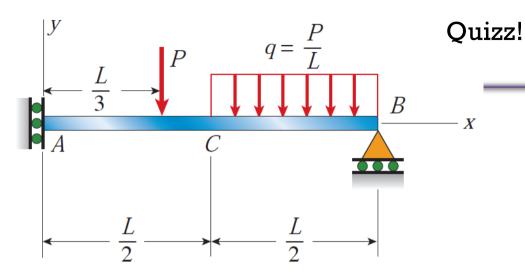
supports typiques

Le type de support nous donne directement des conditions limites



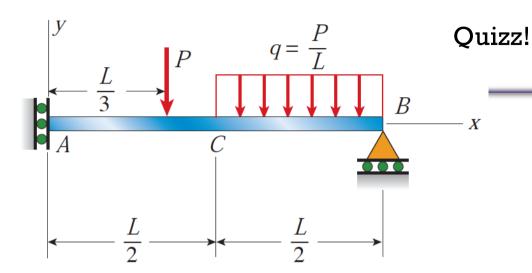
Extrémité libre

$$w^{\prime\prime}=w^{\prime\prime\prime}=0$$



Conditions aux bords à x = 0

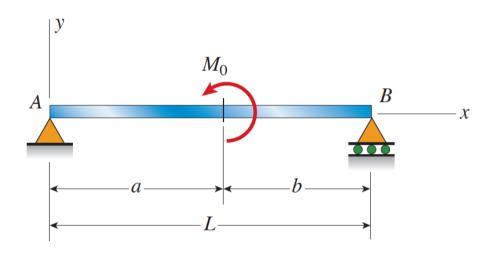
- A. w(0)=0 w'(0)=0
- B. w(0)=inconnue w'(0)=inconnue
- c. w(0)=0 w'(0)=inconnue
- D. w(0)=inconnue w'(0)=0



Conditions aux bords à x = L

 $w(L)=0 \qquad w'(L)=0$

- B. w(L)=inconnue w'(L)=inconnue
- c. w(L)=0 w'(L)=inconnue
- D. w(L)=inconnue w'(L)=0



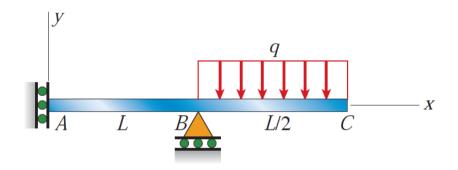
$$w (x = 0) = 0$$

 $w'(x = 0) = incon.$
 $w''(x = 0) = 0$

$$w(x = L) = 0$$

$$w'(x = L) = incon$$

$$w''(x = L) = 0$$



$$w(x = 0) = \text{incon}$$

 $w'(x = 0) = 0$
 $w''(x = 0) = \text{incon}$

$$w(x = L) = 0$$

 $w'(x = L) = \text{incon}$
 $w''(x = L) = \text{incon}$

Exemple: Flèche d'une poutre soumise à force ponctuelle

Poutre encastrée de longueur L. force F à l'extrémité (on néglige la masse de la poutre):

$$M(x) = F(x - L)$$
 (vous savez le calculer)

$$w(x) = \iint \frac{M(x)}{EI} dx^2$$

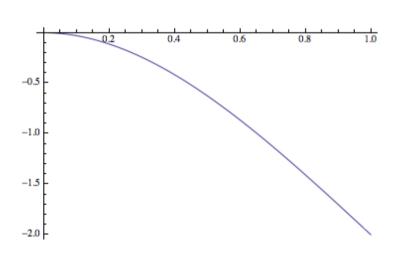
$$w(x) = \frac{F}{6EI} \left(x^3 - 3Lx^2 \right)$$

(calcul au slide suivant)

Conditions aux bords:

$$w(0) = 0$$

$$w'(0) = 0$$



$$M(x) = F(x - L)$$

$$w'(x) = \int \frac{M_Z(x)}{EI_{Z,y_0}} dx$$

$$\omega'(x) = \left[F\frac{x^2}{2} - fLx + A\right] \stackrel{f}{=} E$$

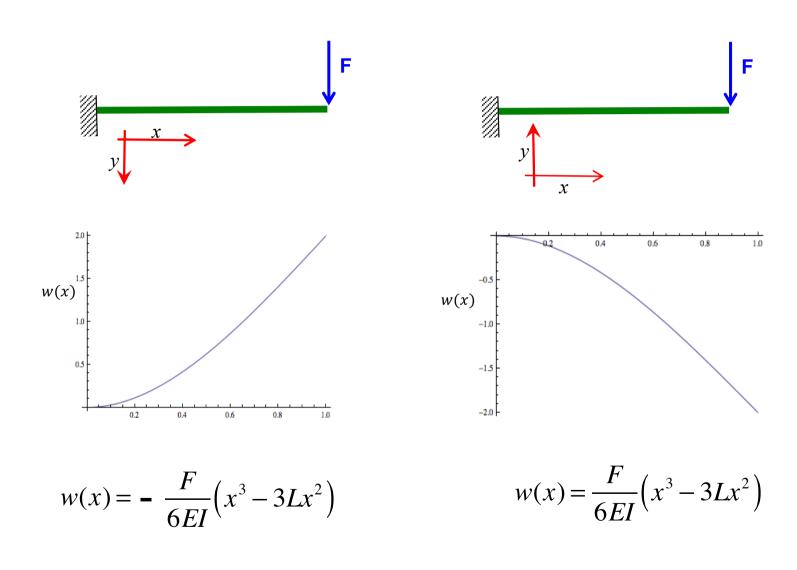
$$\omega(x) = \left[F\frac{x^3}{6} - FLx^2 + Ax + B\right] \stackrel{f}{=} E$$

$$\omega'(\chi=0)=0 \rightarrow A=0$$

$$\omega(\chi=0)=0 \rightarrow B=0$$

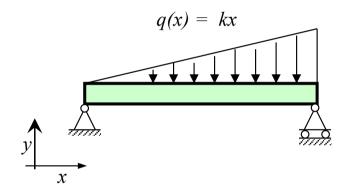
$$\omega(\chi)=\frac{F}{E}\left(\frac{\chi^{3}-\chi^{2}L}{6}\right)$$

La flèche doit aller dans la direction physique!

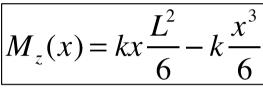


Exemple: Flèche d'une poutre soumise à une force distribuée

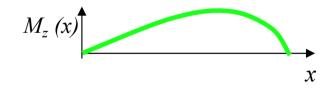
Calculer la flèche w(x) et l'angle de la poutre w'(x) aux points A et B



$$w''(x) = \frac{M(x)}{EI}$$



d'un cours précédent

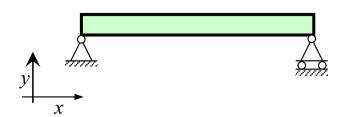


Conditions aux bords: w(0) = 0 et w(L) = 0

$$w(0) = 0$$

$$w(L)=0$$

$$q(x) = kx$$

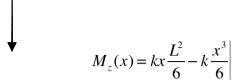


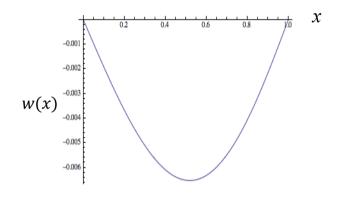
$$w''(x) = \frac{M(x)}{EI}$$

$$w'(x) = \int \frac{M(x)}{EI} dx = \frac{1}{EI} \int \left(-k\frac{x^3}{6} + kx\frac{L^2}{6}\right) dx$$

$$w'(x) = \frac{1}{EI} \left(-k \frac{x^4}{24} + kL^2 \frac{x^2}{12} + A \right)$$

$$w(x) = \frac{1}{EI} \left(-k \frac{x^5}{120} + kL^2 \frac{x^3}{36} + Ax + B \right)$$





$$M_z W_x(0) = 0$$
 donc $B = 0$
 $W(L) = 0$ donc $A = -kL^4 (7/360)$

$$w(x) = \frac{1}{EI} \left(-k \frac{x^5}{120} + kL^2 \frac{x^3}{36} - \frac{7kL^4}{360} x \right)$$

Méthode alternative pour les constantes (mais il faut les mêmes infos sur les conditions aux bords)

$$w'(x) - w'(x = 0) = \frac{1}{EI} \int_0^x \left(\frac{kuL^2}{6} - \frac{ku^3}{6}\right) du$$

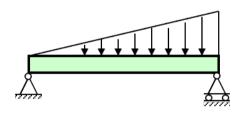
$$w'(x) - w'(x = 0) = \frac{1}{EI} \left(\frac{kL^2x^2}{12} - \frac{kx^4}{24}\right)$$

$$w'(x) = w'(x = 0) + \frac{1}{EI} \left(\frac{kL^2x^2}{12} - \frac{kx^4}{24}\right)$$

$$w(x) - w(0) = \int_0^x w'(u) du$$

$$w(x) - w(0) = \frac{1}{EI} \left(\frac{kL^2 x^3}{36} - \frac{kx^5}{120} + x w'(0) \right)$$

$$w(x) = w(0) + \frac{1}{EI} \left(\frac{kL^2 x^3}{36} - \frac{kx^5}{120} + x w'(0) \right)$$



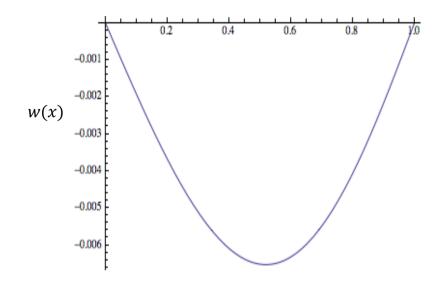
Des conditions aux bords

1.
$$w(0) = 0$$

2.
$$w(L) = 0$$
 donc $w'(0) = -kL^4 (7/360)$

$$w(x) = \frac{1}{EI} \left(-k \frac{x^5}{120} + kL^2 \frac{x^3}{36} - \frac{7kL^4}{360} x \right)$$

De la même façon , pour M(x) on peut écrire $M_1(x) = M_1(0) + \int_0^x V_1(x') dx'$



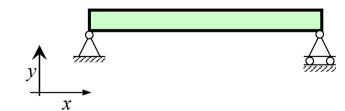
w'(x) donnes les angles aux supports

$$w'(x) = \frac{1}{EI} \left(-\frac{kx^4}{24} + \frac{kL^2x^2}{12} - \frac{7kL^4}{360} \right)$$

$$w'(x=0) = -\frac{7kL^4}{360}$$

$$w'(x = L) = +\frac{8kL^4}{360}$$

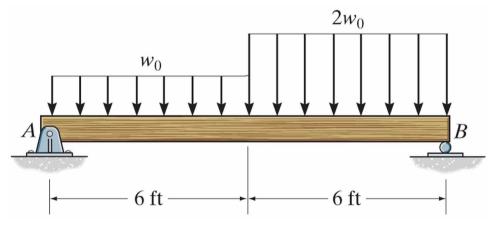
$$q(x) = kx$$



Flèche-partie 2 Continuité

Objectifs d'apprentissage

• Utiliser la <u>continuité</u> de flèche et de la pente pour trouver les constantes d'intégrations pour des poutres avec de multiples zones.



Condition limites de continuité

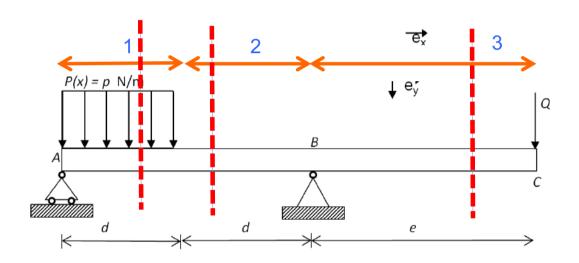
pour tout point d'une poutre:

$$\lim_{x \to x_0^+} w(x) = \lim_{x \to x_0^-} w(x) = w(x_0)$$

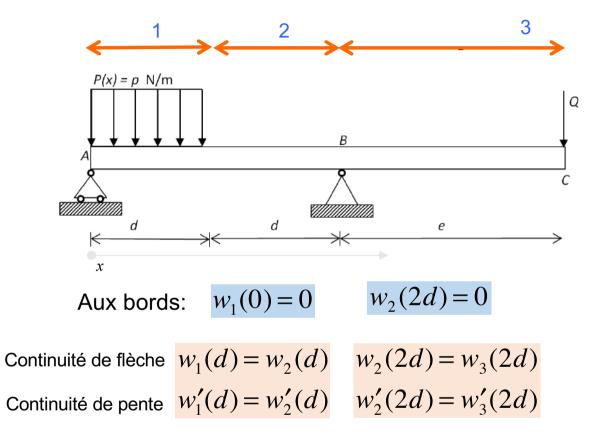
$$\lim_{x \to x_0^+} w'(x) = \lim_{x \to x_0^-} w'(x) = w'(x_0)$$

- La flèche est continue
- L'angle de la flèche est continu

- Chaque « région » d'une poutre a une équation pour w(x), tout comme chaque « région » de la poutre a une expression pour M(x) et pour V(x).
- Continuité de la flèche et de la pente de la flèche: donne des équations de continuité entre les « régions »



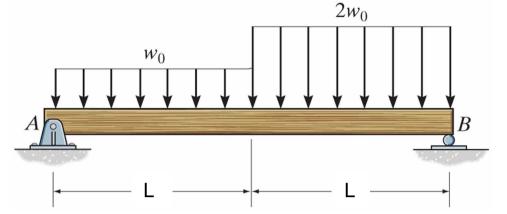
$$M_1(x)$$
 pour $0 < x < d$
 $M_2(x)$ pour $d < x < 2d$
 $M_3(x)$ pour $2d < x < 2d + e$
 $w_1(x)$ pour $0 < x < d$
 $w_2(x)$ pour $d < x < 2d$
 $w_3(x)$ pour $d < x < 2d + e$

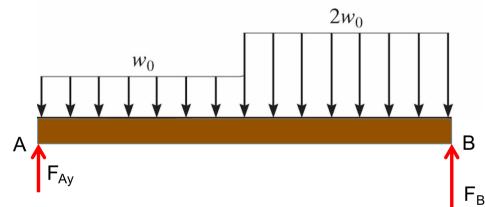


Pour trouver $w_1(x)$, $w_2(x)$, $w_3(x)$, il faut non seulement $M_1(x)$, $M_2(x)$, $M_3(x)$ mais aussi les conditions aux bords (incluant 4 eq de continuité) afin de trouver toutes les constantes d'intégration.

Q: Trouver w(x) le long de cette poutre

w₀ en N/m





2 zones

$$M_1(x) = \frac{5}{4} w_0 L x - \frac{1}{2} w_0 x^2 \qquad 0 < x < L$$

$$M_2(x) = \frac{9}{4} w_0 L x - \frac{1}{2} w_0 L^2 - w_0 x^2 \qquad L < x < 2L$$

Conditions au bords:

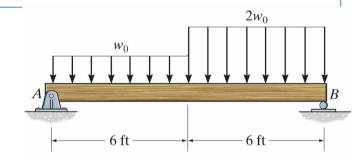
$$w_1(x = 0) = 0$$

 $w_2(x = 2L) = 0$

Conditions de continuité:

$$w_1(x = L) = w_2(x = L)$$

 $w'_1(x = L) = w'_2(x = L)$



$$M_1(x) = \frac{5}{4} w_0 L x - \frac{1}{2} w_0 x^2 \qquad 0 < x < L$$

$$M_2(x) = \frac{9}{4} w_0 L x - \frac{1}{2} w_0 L^2 - w_0 x^2 \qquad L < x < 2L$$

pour 0 < x < 6

$$EI_{z} w'_{1}(x) = \frac{5}{4}w_{o}L\frac{x^{2}}{2} - \frac{1}{2}w_{o}\frac{x^{3}}{3} + \alpha$$

$$EI_{z} w_{1}(x) = \frac{5}{4}w_{o}L\frac{x^{3}}{6} - \frac{1}{24}w_{o}x^{4} + \alpha x + \beta$$

Pour 6 < x < 12

$$EI_z \ w_2'(x) = \frac{9}{4}w_oL\frac{x^2}{2} - \frac{1}{2}w_oL^2x - w_o\frac{x^3}{3} + \gamma$$

$$EI_z \ w_2 \ (x) = \frac{9}{8} w_o L \frac{x^3}{3} - \frac{1}{4} w_0 L^2 x^2 - w_0 \frac{x^4}{12} + \gamma x + \delta$$

- 4 inconnues, 4 équations
- On peut résoudre!

Algèbre pour trouver $\alpha, \beta, \gamma, \delta$

Ici, poutre de section et module E constant

Poutres avec section non-constante

poutre encastrée, avec moment Mo appliqué en extrémité de la poutre

Trouver la flèche le long de cette poutre de section carrée. Module Young E constant

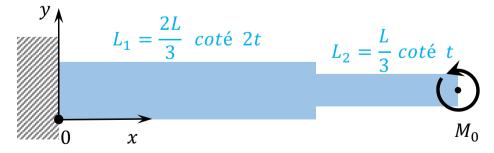
$$0 < x < 2L/3$$
, section de coté $2t$, $2L/3 < x < L$, section de coté t

d'abord, calculer le moment de flexion

$$M_z(x) = M_0$$
 Pour toute la poutre

■ Puis intégrer pour trouver la flèche:

$$w''(x) = \frac{M_0}{EI(x)} \to w''(x) = \begin{cases} \frac{M_0}{EI_{z1}}; & 0 \le x \le 2L/3\\ \frac{M_0}{EI_{z2}}; & \frac{2L}{3} < x < L \end{cases}$$



attention, $I_{z,1} \neq I_{z,2}$ $I_{z,1} = \frac{4}{3}t^4$ $I_{z,2} = \frac{1}{4}t^4$

poutre encastrée, avec moment Mo appliqué en extrémité de la poutre

- Intégrer deux fois M(x). 4 constantes d'intégration (2 par zone)
- utiliser les 2 conditions à x = 0 et la continuité de la flèche et de la pente à x = 2L/3

$$w_1(x = 0) = 0$$

 $w'_1(x = 0) = 0$

$$w_1\left(x=\frac{2L}{3}\right)=w_2\left(x=\frac{2L}{3}\right)$$

$$w_1'\left(x = \frac{2L}{3}\right) = w_2'(x = \frac{2L}{3})$$

$$L_1 = \frac{2L}{3} \cot 2t$$

$$L_2 = \frac{L}{3} \cot 2t$$

$$M_0$$

$$\begin{cases} w_1'(x) = \frac{3M_0}{4Et^4}x & 0 \le x \le 2L/3 \\ w_2'(x) = \frac{12M_0}{Et^4} \left(x - \frac{2L}{3}\right) + \frac{M_0L}{2Et^4} & x \ge \frac{2L}{3} \end{cases}$$

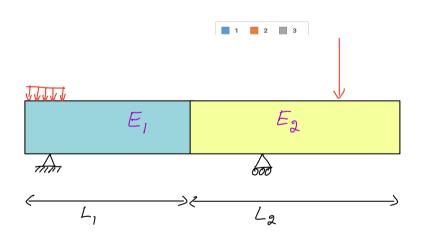
$$\begin{cases} w_1(x) = \frac{3M_0}{8Et^4}x^2 & 0 \le x \le 2L/3 \\ w_2(x) = \frac{6M_0}{Et^4}\left(x - \frac{2L}{3}\right)^2 + \frac{M_0L}{2Et^4}\left(x - \frac{2L}{3}\right) + \frac{M_0L^2}{6Et^4} & x \ge \frac{2L}{3} \end{cases}$$

Quelle équation est juste pour w''(x) si E est différent pour les différentes parties de la poutre?

$$w''(x) = \begin{cases} \frac{M_z(x)}{E_1 I_z}; & 0 \le x \le L_1 \\ \frac{M_z(x)}{E_2 I_z}; & L_1 < x < L_1 + L_2 \end{cases}$$

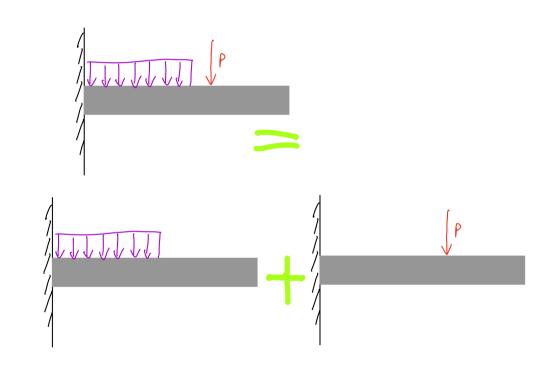
$$w''(x) = \frac{M_Z(x)}{\langle E | I_Z \rangle} \qquad 0 \le x \le L_1 + L_2$$

$$w''(x) = \begin{cases} \frac{M_{Z}(x)}{E_{1} I_{Z}}; & 0 \le x \le L_{1} \\ \frac{M_{Z}(x)}{E_{1} I_{Z}} + \frac{M_{Z}(x)}{E_{2} I_{Z}}; & L_{1} < x < L_{1} + L_{2} \end{cases}$$



Flèche-partie 3: <u>Superposition</u> Objectifs d'apprentissage

 Savoir utiliser la superposition pour (plus) facilement trouver la flèche de poutres avec de multiples charges



Outil puissant!

Principe de superposition pour flèche des poutres

- Pour des poutres linéairement élastiques, nous avons des équations différentielles linéaires.
- Pour une telle situation, nous pouvons séparer une charge compliquée $q_{total}(x)$ en plusieurs charges plus simples :

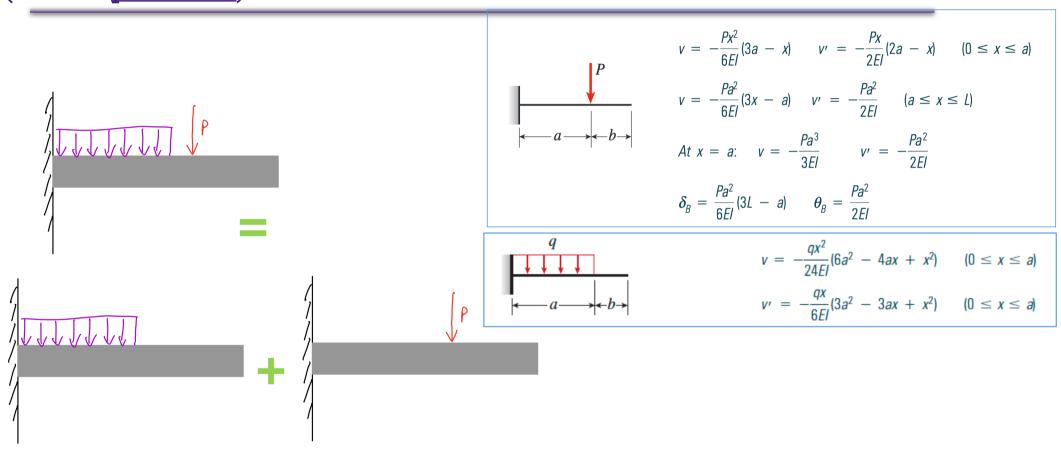
$$q_{total}(x) = q_{1facile}(x) + q_{2facile}(x) \dots$$

- lacktriangle Nous pouvons ensuite faire les intégrations pour $w_i(x)$ de chaque $q_i(x)$ séparément
- Puis nous ajoutons les flèches dues à chaque charge

$$w(x) = w_1(x) + w_2(x) \dots$$

■ Nous pouvons utiliser un tableau des flèches correspondants aux cas habituels ...

On peut ajouter <u>linéairement</u> les déplacements dues à différentes forces (somme <u>pondérée</u>)

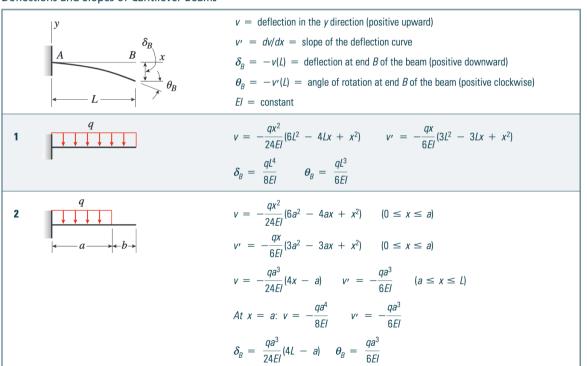


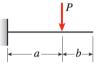
annexe G ou H de Gere et Goodno

- voir fichier sur Moodle semaine 8. tableau très complet pour poutres sous différentes contraintes
- (tableau G ou H: dépend de l'édition du livre)

Table G-1

Deflections and Slopes of Cantilever Beams



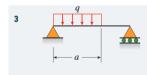


$$v = -\frac{Px^{2}}{6EI}(3a - x) \qquad v' = -\frac{Px}{2EI}(2a - x) \qquad (0 \le x \le a)$$

$$v = -\frac{Pa^{2}}{6EI}(3x - a) \qquad v' = -\frac{Pa^{2}}{2EI} \qquad (a \le x \le L)$$

$$At \ x = a: \qquad v = -\frac{Pa^{3}}{3EI} \qquad v' = -\frac{Pa^{2}}{2EI}$$

$$\delta_{B} = \frac{Pa^{2}}{6EI}(3L - a) \qquad \theta_{B} = \frac{Pa^{2}}{2EI}$$



$$v = -\frac{qx}{24LEl}(a^4 - 4a^3L + 4a^2L^2 + 2a^2x^2 - 4aLx^2 + Lx^3) \qquad (0 \le x \le a)$$

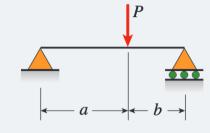
$$v' = -\frac{q}{24LEl}(a^4 - 4a^3L + 4a^2L^2 + 6a^2x^2 - 12aLx^2 + 4Lx^3) \qquad (0 \le x \le a)$$

$$v = -\frac{qa^2}{24LEl}(-a^2L + 4L^2x + a^2x - 6Lx^2 + 2x^3) \qquad (a \le x \le L)$$

$$v' = -\frac{qa^2}{24LEl}(4L^2 + a^2 - 12Lx + 6x^2) \qquad (a \le x \le L)$$

$$\theta_A = \frac{qa^2}{24LEl}(2L - a)^2 \qquad \theta_B = \frac{qa^2}{24LEl}(2L^2 - a^2)$$

Attention, y est positif vers le haut pour ces formules!



$$v = -\frac{Pbx}{6LEI}(L^2 - b^2 - x^2) \qquad v' = -\frac{Pb}{6LEI}(L^2 - b^2 - 3x^2) \qquad (0 \le x \le a)$$

$$(0 \le x \le a)$$

$$\theta_A = \frac{Pab(L + b)}{6LEI}$$
 $\theta_B = \frac{Pab(L + a)}{6LEI}$

If
$$a \ge b$$
, $\delta_{\mathcal{C}} = \frac{Pb(3L^2 - 4b^2)}{48EI}$ If $a \le b$, $\delta_{\mathcal{C}} = \frac{Pa(3L^2 - 4a^2)}{48EI}$

Et pour a > x > L ??

Changement de variables!

Pour les cas symétriques (pas encastré!)

$$a \rightarrow b$$

$$b \rightarrow a$$

$$x \rightarrow (L - x)$$

Pour le cas ci-dessus:

$$v = -\frac{Pa(L-x)}{6 LEI} (L^2 - a^2 - (L-x)^2)$$
$$v = -\frac{Pa(L-x)}{6 LEI} (2Lx - a^2 - x^2)$$

Formules utiles

On peut ajouter <u>linéairement</u> les déplacements dues à différentes forces (somme pondérée)

$$w(x) = -\frac{FL^{3}}{6EI} \left(3\left(\frac{x}{L}\right)^{2} - \left(\frac{x}{L}\right)^{3} \right)$$

$$w(x) = \begin{cases} -\frac{Fa^{3}}{6EI} \left(3\left(\frac{x}{a}\right)^{2} - \left(\frac{x}{a}\right)^{3} \right); & x \leq a \\ -\frac{Fa^{3}}{6EI} \left(3\left(\frac{x}{a}\right) - 1 \right); & x > a \end{cases}$$

$$w(x) = -\frac{q_{0}L^{4}}{24EI} \left(6\left(\frac{x}{L}\right)^{2} - 4\left(\frac{x}{L}\right)^{3} + \left(\frac{x}{L}\right)^{4} \right)$$

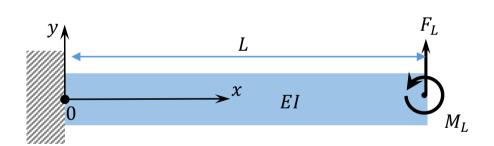
$$w(x) = -\frac{q_{0}L^{4}}{120EI} \left(10\left(\frac{x}{L}\right)^{2} - 10\left(\frac{x}{L}\right)^{3} + 5\left(\frac{x}{L}\right)^{4} - \left(\frac{x}{L}\right)^{5} \right)$$

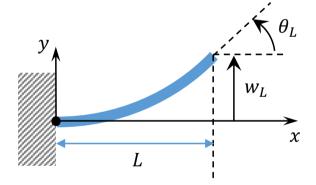
$$w(x) = -\frac{q_{0}L^{4}}{120EI} \left(20\left(\frac{x}{L}\right)^{2} - 10\left(\frac{x}{L}\right)^{3} + \left(\frac{x}{L}\right)^{5} \right)$$

Exemple

Poutre encastrée. Force F_L et moment externe M_L appliqués à l'extrémité libre (à x=L)

Trouver w(x) et $\theta_L = w'(x = L)$ en fonction de F_L et de M_L



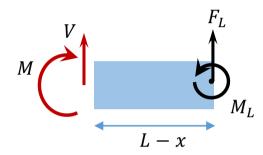


Solution

(d'abord, un peu péniblement, sans superposition)

Moment de flexion: $M(x) = M_L + F_L(L - x)$

$$\frac{d^2w(x)}{dx^2} = \frac{M(x)}{EI} = \frac{M_L + F_L(L - x)}{EI}$$



Intégration:

$$\theta(x) = \frac{dw(x)}{dx} = \frac{1}{EI} \left[M_L x + F_L \left(Lx - \frac{x^2}{2} \right) + c_1 \right]$$

$$w(x) = \frac{1}{EI} \left[\frac{M_L x^2}{2} + F_L \left(\frac{Lx^2}{2} - \frac{x^3}{6} \right) + c_1 x + c_2 \right]$$

les constantes d'intégration c_1 et c_2 seront calculées à l'aide de conditions limites

Solution

1-
$$w(0) = 0$$

2-
$$\theta(0) = \frac{dw(0)}{dx} = 0$$

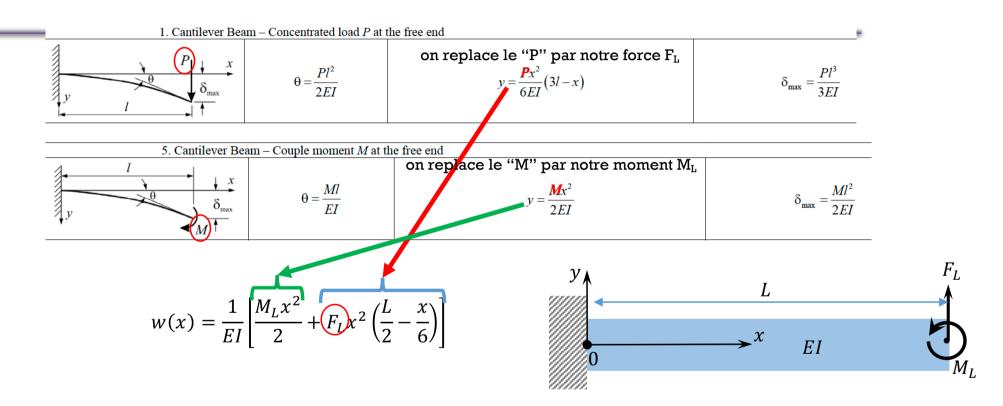
$$\theta(0) = \frac{1}{EI} \left[F_L \left(L \times 0 - \frac{0^2}{2} \right) + c_1 \right] = 0 \implies c_1 = 0$$

$$w(0) = \frac{1}{EI} \left[\frac{M_L 0^2}{2} + F_L \left(\frac{L0^2}{2} - \frac{0^3}{6} \right) + c_1 \times 0 + c_2 \right] = 0 \implies c_2 = 0$$

$$\theta(x) = \frac{1}{EI} \left[M_L x + F_L \left(Lx - \frac{x^2}{2} \right) \right] \Rightarrow \theta_L = \theta(L) = \frac{M_L L}{EI} + \frac{F_L L^2}{2EI}$$

$$w(x) = \frac{1}{EI} \left[\frac{M_L x^2}{2} + F_L \left(\frac{Lx^2}{2} - \frac{x^3}{6} \right) \right] \Rightarrow w_L = w(L) = \frac{M_L L^2}{2EI} + \frac{F_L L^3}{3EI}$$

Résolution par superposition directement (en nous servant des tables de réponses)

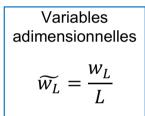


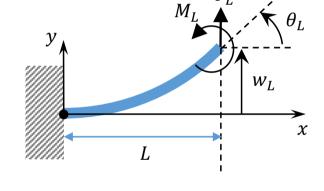
c'est 10x plus rapide... (car le travail a déjà été fait!)

mais faites bien attention aux conventions dans les tableaux et à bien pondérer.

La forme matricielle de w(L) permet de voir la superposition

Présentation matricielle





$$\begin{bmatrix} \widetilde{w_L} \\ \theta_L \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{1}{2} \\ \frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} \widetilde{F_L} \\ \widetilde{M_L} \end{bmatrix}$$

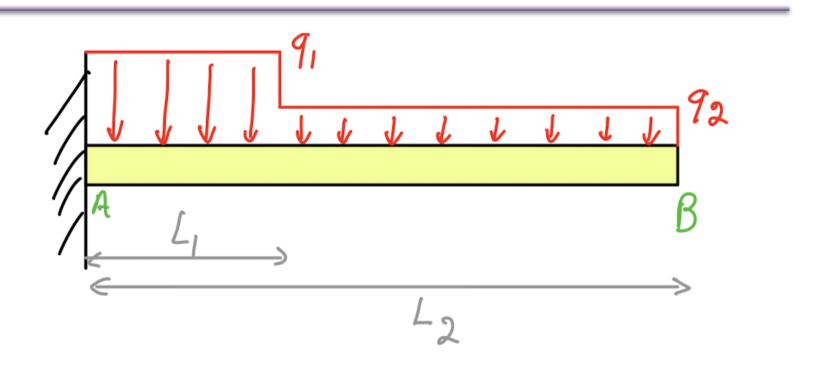
matrice de souplesse

$$\begin{bmatrix} \widetilde{F_L} \\ \widetilde{M_L} \end{bmatrix} = \begin{bmatrix} 12 & -6 \\ -6 & 4 \end{bmatrix} \begin{bmatrix} \widetilde{w_L} \\ \theta_L \end{bmatrix}$$

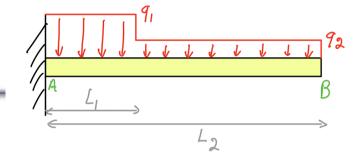
matrice de rigidité

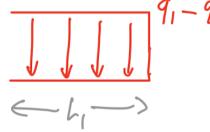
Nous allons utiliser plusieurs fois cette représentation pour les guidages flexibles dans le cours qui suit, à la semaine 9a

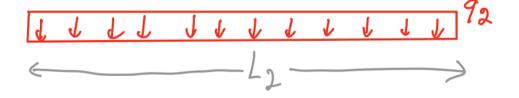
Exemple: Trouver la déflection au point B



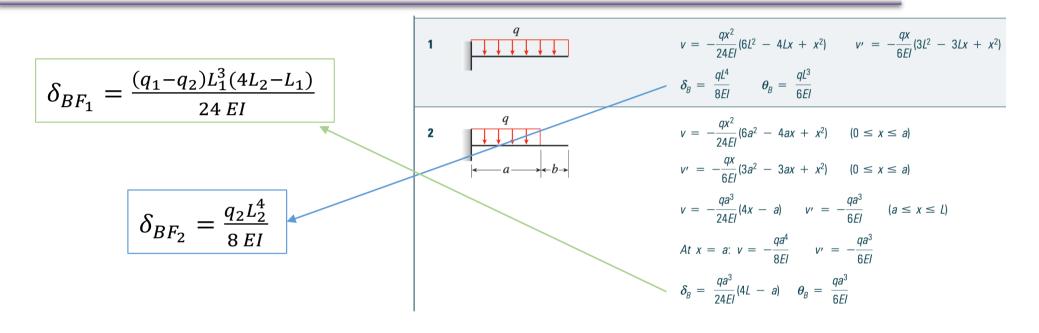
Décomposer la charge en charges "simples"







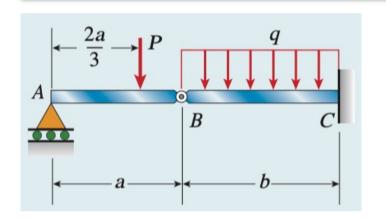
Trouver la déflection en B pour chaque charge simple

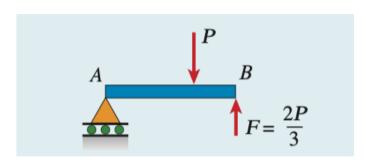


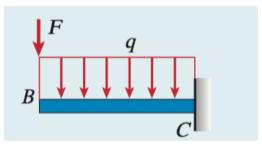
$$\delta_B = \delta_{BF_1} + \delta_{BF_2} = \frac{(q_1 - q_2)L_1^3(4L_2 - L_1)}{24 EI} + \frac{q_2L_2^4}{8 EI}$$

Exemple en apparence plus complexe

(9.20 de Geere et Goodno). Trouver la flèche en B







$$\delta_B = \frac{qb^4}{8EI} + \frac{Fb^3}{3EI}$$

$$\delta_B = \frac{qb^4}{8EI} + \frac{2Pb^3}{9EI}$$

Flèche de charge distribuée

+

Flèche de force ponctuelle

Charges → Flèche → Forces internes Ou

Charges → Forces internes → Flèche

On vous donne les charges, on demande M(x) et V(x). Les possibilités:

1. Trouver w(x) par superposition, puis dériver w(x) pour obtenir M(x) et V(x)

Ou

- 2. Méthodes des sections, trouver M(x) et V(x)
- 3. Méthode différentielle, trouver M(x) et V(x) en intégrant q(x)

Ça dépend

- \square Qu'est-ce qu'on demande? N(x)?
- □ Complexité
- □ Risque

